
Think Like a Programmer
Errata, Clarifications, and Updates
Last Updated 2/21/2017

This lists errata and clarifications going back to the first printing; almost all of these
issues are already corrected in the latest printing. The most recent errata are marked
[NEW].

Chapter 1

[NEW] Page 12. In part 3 of Figure 1-12, the 7 is missing from the centermost square.

Chapter 2

Page 32. Second paragraph, "starting with each digit to the right of the check digit,"
should be "each digit to the left of the check digit."

Page 34. In first code listing, doubledDigit > 10 should be doubledDigit >= 10.

Page 38. In the code listing, else checksum += 2 * (digit - '0') should be
else checksum += doubledDigitValue(digit - '0')

Page 41. In the third paragraph of the "Decode a Message" problem description,
"...would yield the letter b because 57 modulo 27 is 2...", the 57 should be 56.

Pages 46, 47, and 48. In these listings, the output labels should be "Number entered" and
not "Numbered entered."

Pages 53-54. Problems 2.1 through 2.3 require a third output statement, one that outputs
a space (i.e., cout << " ";).

Change the text of 2.1 to:

Using only single-character output statements that output a hash mark, a space, or
an end-of-line, write a program that produces the following shape:

The shape itself, and questions 2.2 and 2.3, can then remain as they are.

Chapter 3

Page 60. Last two sentences of the paragraph that starts the page should dereference the
variables intA and intB. "If *intA > *intB, for example, we want to return a positive
number, and *intA – *intB will be positive if *intA > *intB. Likewise, *intA – *intB will
be negative if *intB > *intA and will be zero when the two integers are equal."

Page 66. The sentence, "Therefore, we initialize it to 0 and not the value in location[0]."
The word "location" is formatted as though it was the name of the array. What is meant is
"in location [0]", that is, the location [0] in the histogram array.

Page 71. The first paragraph refers to the code on the previous page, but describes it as
finding the record with the grade closest to the average, when it's just finding the record
with the highest grade. It should read:

Here, the variable highPosition (1) takes the place of highest. Because we aren't
directly tracking the highest grade, when it's time to compare the highest grade
against the current grade, we use highPosition as a reference into studentArray
(2). If the grade in the current array position is higher, the current position in our
processing loop is assigned to highPosition (3). Once the loop is over, we can
access the name of the student with the highest grade using
studentArray[highPosition].name, and we can also access any other data related
to that student record.

Page 72. Third non-code paragraph, numAgents should be NUM_AGENTS. (

Page 72-73. In arrayAverage function, 0.5 should not be added to sum before dividing by
ARRAY_SIZE. In the code that uses the function, highestAverage and agentAverage
should be double instead of int.

The code at the bottom of page 72 should be (change highlighted):

double arrayAverage(int intArray[], int ARRAY_SIZE) {

 double sum = 0;

 for (int i = 0; i < ARRAY_SIZE; i++) {

 sum += intArray[i];

 }

 double average = sum / ARRAY_SIZE;

 return average;

}

The code at the top of page 73 should be:

double highestAverage = arrayAverage(sales[0], 12);

for (int agent = 1; agent < NUM_AGENTS; agent++) {

 double agentAverage = arrayAverage(sales[agent], 12);

 if (agentAverage > highestAverage)

 highestAverage = agentAverage;

}

cout << "Highest monthly average: " << highestAverage << "\n";

Page 77. First full paragraph, "Furthermore, reading all of the grades into the vector..."
should be "reading all of the survey responses into the vector..."

Chapter 4

Page 89. The paragraph that begins at the bottom of the page is missing two of the
references to the preceding code block. The first part of the paragraph should read:

This code has a global variable (1) which in most cases is bad style, but here I
need a value that persists throughout all of the recursive calls. As this variable is
declared outside of the function, no memory is allocated for it in the function’s
activation record, nor are there any other local variables or parameters. All the
function does is increment count (2) and make a recursive call (3). Recursion is
discussed extensively in Chapter 6 but is used here simply to make the chain of
function calls as long as possible. The activation record of a function remains on
the stack until that function ends. So when the first call is made to stackOverflow
from main (4), an activation record is placed on the runtime stack that cannot be
removed until that first function call ends.

Page 94. Last sentence of first paragraph, "Including the allocated memory..." should be
"Including the deallocated memory..."

Page 101. "Tracking an Unknown Quantity of Student Records" problem description.
The addRecord description should say; "This function takes a pointer to a collection of
student records, a student number, and a grade, and it adds a new record with this data to
the collection."

Page 102. Second paragraph, "Again, studentCollection is synonymous with node *."
This should read "...with listNode *."

Chapter 5

Page 124. There's a mismatch between the code and the description. Change the sentence
in parentheses in the second full paragraph on page 124, from:

(You might wonder how, if we’re validating grades as they are assigned, we could
ever have an invalid grade, but remember that our default constructor assigns –1
to signal that no legitimate grade has been assigned yet.)

to

(You might wonder how, if we’re validating grades as they are assigned, we could
ever have an invalid grade, but we might decide to assign an invalid grade in the
constructor to signal that no legitimate grade has been assigned yet.)

Page 127. In first paragraph, reference to "studentRecord struct type" should be
"studentRecord class." I.e., studentCollection data member studentData is an instance of
the studentRecord class.

Page 128. Third paragraph begins, "Now we can turn our attention to the last of the three
member functions, recordWithNumber." This is the second function in the list, not the
third.

Page 140. In sentence continued at the top of the page: "of student records, we're still
responsible for deleting the nodes in the list when we we're through with them," the word
"we" should be deleted.

Chapter 6

Page 156. In the declaration of the "bad example" function with too many parameters, the
function should be named arraySumRecursiveExtraParameters to match the recursive
call and the call in the code block later on the page.

Page 157. The zeroCountIterative function should not declare the local variable sum.

That line in the code should be deleted:

int zeroCountIterative(int numbers[], int size) {

 int sum = 0;

 int count = 0;

 for (int i = 0; i < size; i++) {

 if (numbers[i] == 0) count ++;

 }

 return count;

}

Page 158. In the second code listing, the declaration of the struct listNode is mislabeled
listNnode.

Page 163. treePtr in code listing should be a pointer to binaryTreeNode. See corrections
for 163-166 below. (Style issue only).

Page 165. In the first sentence, "...private data member root," should be "...private data
member _root." In the next paragraph, "It calls privateCountLeaves, passing the private

data member root," there's the same issue--should be _root. See corrections for 163-166
below.

Page 166. This is a style issue only--the stack-based leaf-counting function should
declare nodes as stack<treePtr> instead of stack<binaryTreeNode *>. See corrections
for 163-166 below.

Pages 163-166. The "countLeaves" methods should be given a "noun" name (like
"leafCount") to match prior naming conventions.

Page 163, code listing. Changes in yellow.

class binaryTree {

 public:

 int leafCount();

 private:

 struct binaryTreeNode {

 int data;

 binaryTreeNode * left;

 binaryTreeNode * right;

 };

 typedef binaryTreeNode * treePtr;

 treePtr _root;

};

and

int numLeaves = bt.leafCount();

Page 164, code listing.

struct binaryTreeNode {

 int data;

 binaryTreeNode * left;

 binaryTreeNode * right;

};

typedef binaryTreeNode * treePtr;

int leafCount(treePtr rootPtr) {

 if (rootPtr == NULL) return 0;

 if (rootPtr->right == NULL && rootPtr->left == NULL)

 return 1;

 int leftCount = leafCount(rootPtr->left);

 int rightCount = leafCount(rootPtr->right);

 return leftCount + rightCount;

}

Page 165, code listing.

class binaryTree {

 public:

 int publicLeafCount();

 private:

 struct binaryTreeNode {

 int data;

 binaryTreeNode * left;

 binaryTreeNode * right;

 };

 typedef binaryTreeNode * treePtr;

 treePtr _root;

 int privateLeafCount(treePtr rootPtr);

};

int binaryTree::privateLeafCount(treePtr rootPtr) {

 if (rootPtr == NULL) return 0;

 if (rootPtr->right == NULL && rootPtr->left == NULL)

 return 1;

 int leftCount = privateLeafCount(rootPtr->left);

 int rightCount = privateLeafCount(rootPtr->right);

 return leftCount + rightCount;

}

int binaryTree::publicLeafCount() {

 return privateLeafCount(_root);

}

Paragraph that follows:

Although C++ would allow both functions to have the same name, for clarity,

I’ve used different names to distinguish between the public and private “leaf

count” functions. The code in privateLeafCount  is exactly the same as our

previous, independent function leafCount. The wrapper function

publicLeafCount is simple. It calls privateLeafCount, passing the private data

member root, and returns the result . In essence, it “primes the pump” of the

recursive process. Wrapper functions are very helpful when writing recursive

functions inside classes, but they can be used anytime a mismatch exists between

the parameter list required by a function and the desired parameter list of a caller.

Page 167. The sentence reading "Second, look how many function calls
stackBasedCountLeaves makes--for each visit to an interior node (i.e., not a leaf), this
function makes four function calls: one each to empty and top, and two to push" is
imprecise. It should say, "Second, look how many function calls stackBasedCountLeaves
makes--for each visit to an interior node (i.e., not a leaf), this function makes up to five
function calls: one each to empty, top, and pop, and one or two to push."

Chapter 7

Page 178. In the first sentence in the second paragraph, lowerStudent should be
lowerStudentNumber.

Page 183. In the paragraph that continues at the top of the page, the sentence that begins
"If integerList is a list<int>..." should begin "if intList..."

Page 190. End of first full paragraph. In the sentence beginning "If sra is an array
containing arraysize objects" it should read "arraySize."

Page 192. Note: the secondary array sortArray must be declared dynamically if arraySize
isn't a const:

studentRecord * sortArray = new studentRecord[arraySize];

int sortArrayCount = 0;

for (int i = 0; i < arraySize; i++) {

 if (sra[i].grade() != -1) {

 sortArray[sortArrayCount] = sra[i];

 sortArrayCount++;

 }

}

qsort(sortArray, sortArrayCount, sizeof(studentRecord), compareStudentRecord);

sortArrayCount = 0;

for (int i = 0; i < arraySize; i++) {

 if (sra[i].grade() != -1) {

 sra[i] = sortArray[sortArrayCount];

 sortArrayCount++;

 }

}

Chapter 8

Pages 213-214. These functions make use of a const_iterator object (iter) which is
passed to the erase method of the list class. In some implementations of the standard
library this will result in an error; to be safe iter should be declared simply as iterator.

The functions starting at the bottom of 213 should be (changes highlighted):

void removeWordsWithLetter(list<string> & wordList, char forbiddenLetter) {
 list<string>::iterator iter;
 iter = wordList.begin();
 while (iter != wordList.end()) {
 if (iter->find(forbiddenLetter) != string::npos) {
 iter = wordList.erase(iter);
 } else {
 iter++;
 }
 }
}

void removeWordsWithoutLetter(list<string> & wordList, char requiredLetter) {
 list<string>::iterator iter;
 iter = wordList.begin();
 while (iter != wordList.end()) {
 if (iter->find(requiredLetter) == string::npos) {
 iter = wordList.erase(iter);
 } else {
 iter++;
 }
 }
}

Page 221:The declaration of integerListClass in the Java code (middle of page) requires
parentheses:

integerListClass numberList = new integerListClass();

General: The chapter doesn't show the code for the reduceByPattern function; it's very
similar to the other word-list functions:

list<string> reduceByPattern(const list<string> & wordList, char letter, list<int>
pattern) {
 list<string> newList;

 list<string>::const_iterator iter;
 iter = wordList.begin();
 while (iter != wordList.end()) {
 if (matchesPattern(*iter, letter, pattern)) {
 newList.push_back(*iter);
 }
 iter++;
 }
 return newList;
}

